Eindrapportage

Eerste herhaalmeting geomorfologische dynamiek stuifzandgebied Hulshorsterzand

Opdrachtgever Natuurmonumenten

> Auteur Jan van Til

Publicatiedatum mei 2020

HiView rapport 23

HiView Costerweg 1V 6702AA Wageningen www.hiview.nl info@hiview.nl 06 18141772

Inhoud

1	Introductie	3
1.1	Achtergrond	3
1.2	Locatie	4
2	Methodologie	5
3	Resultaten	6
3.1	Ruwe beelden	6
3.2	Orthomozaïeken van de drie werkgebieden	8
3.3	Vegetatiebedekkingskaart en vegetatieclassificatie	10
3.4	Hoogtemodellen (Digital Elevation Models)	11
3.5	Hoogteverschillenkaart	13
3.6	Hoogtecorrectie	13
4	Discussie	15
4.1	Nauwkeurigheid	15
	4.1.1 Gebied Oost	15
	4.1.2 Gebied West	17
	4.1.3 Gebied Zuid	19
4.2	Kwaliteit	19

⊁HiView

1 Introductie

1.1 Achtergrond

Natuurmonumenten is beheerder van ruim 100.000 ha natuur verdeeld over 355 terreinen. In het Hulshorsterzand is Natuurmonumenten in 2009 gestart met de uitvoering van een herstelplan om gefaseerd het stuifzandgebied uit te breiden en weer actief te laten stuiven. In maart 2015 zijn de uitvoerende werkzaamheden afgerond.

Sinds 2016 staat HiView Natuurmonumenten bij in het monitoren van de zanderosie- en sedimentatieprocessen. Hiervoor worden hoge resolutie hoogte modellen (DEM`s) van verschillende tijden met elkaar worden vergeleken. Een hoge resolutie DEM kan gemaakt worden met behulp van de beelden van de Flying Sensors (drones) van HiView.

Op 8 juni 2016 heeft HiView vluchten met een Flying Sensor uitgevoerd met als doel beelden te leveren voor de nulmeting. Op 15 april van dit jaar, 2020, hebben we de vluchten opnieuw uitgevoerd, nu om te komen tot een herhaalmeting. De gebruikte Flying Sensor was in beide gevallen een eBee van het merk SenseFly, uitgerust met een 3-bands sensor in het rood, groen en blauw. In totaal zijn dezelfde drie gebieden als in 2016 in beeld gebracht, met de werknamen Oost, West en Zuid, vanaf een hoogte van 100 m (in 2020). Per gebied worden de volgende resultaten opgeleverd:

- Ultra-hoge resolutie overlappende ruwe beelden (4x4 cm) in drie banden (rood, groen, blauw).
- Orthorectificatie van de ruwe beelden tot één orthomozaïek (min. resolutie 10x10cm).
- Hoogtemodel (DEM) met een min. resolutie van 10x10cm en een verticale nauwkeurigheid van 5-10 cm.

Figuur 1. Markers plaatsen en inmeten met een Trimble Rover 10

HiView

1.2 Locatie

De locatie van het Hulshorsterzand op de Veluwe is te zien in Figuur en Figuur . De drie stuifzandgebieden die in kaart zijn gebracht zijn uitgekozen na overleg met Remko van Rosmalen en Mirte Kruit (Natuurmonumenten).

Figuur 2. De locatie van het studiegebied Hulshorsterzand op de Veluwe in de provincie Gelderland.

Figuur 3. De locatie van het studiegebied Hulshorsterzand.

⊁HiView

2 Methodologie

Om hoogtemodellen met een grote nauwkeurigheid te verkrijgen, zijn er in het gebied voor aanvang van de vluchten markers neergelegd. Markers, of Ground Control Points, zijn objecten (in ons geval blauwe plastic vlakken) die op de luchtfoto's te herkennen zijn. De coördinaten (x, y, z) van deze markers zijn op 14 april 2020 ingemeten met een RTK (Trimble R10). Voor elk gebied zijn er 9 tot 15 markers ingemeten. De coördinaten van de markers zijn tijdens de beeldverwerking gebruikt voor het georefereren van de beelden. Op 16 april zijn bijna alle markers weer weggehaald. Twee markers in het gebied Zuid zijn helaas verdwenen na de inmeting. Iemand heeft deze twee markers verwijderd, ondanks de vermelding erop dat de markers tijdelijk neergelegd zijn i.v.m. onderzoek.

Op 15 april zijn in totaal 4 vluchten uitgevoerd. Boven gebied Oost en Zuid per gebied een vlucht en boven gebied West twee vluchten. De weersomstandigheden waren goed. De zon scheen en stond, door de tijd van het jaar, niet hinderlijk hoog aan de hemel. Daardoor ontstond er geen weerkaatsing van het licht op het vlakke zand. De vluchten zijn uitgevoerd zonder incidenten en met vermijding van het vliegen boven de snelweg.

Een extra gevlucht met een Near InfraRed (NIR) camera is in gebied Oost uitgevoerd. Dit hield verband met de detectie van jonge opslag, waarvan in een ander rapport verslag wordt gedaan. In hoodstuk 5.2 wordt wel een voorbeeld gegeven hoe met NIR beelden de vegetatiebedekking en -typologie kan worden bepaald.

Figuur 4. Vliegoperaties in gebied Oost

3 Resultaten

Hieronder, in de paragrafen 3.1, 3.2 en 3.4, volgt een impresssie van de opgeleverde resultaten: ruwe beelden, orthomozaïeken en hoogtemodellen. Daarnaast wordt in dit hoofdstuk een idee gegeven van wat men zoal kan in de uitwerking van de resultaten, zoals het maken van vegetatiebedekkingskaarten (3.3) en hoogteverschillenkaarten (3.5).

3.1 Ruwe beelden

Figuur 5. Beeld 1 vanuit de Flying Sensor

Figuur 6. Uitsnede van FS beeld 1

Figuur 7. Beeld 2 vanuit de Flying Sensor

Figuur 8. Uitsnede van FS beeld 2

3.2 Orthomozaïeken van de drie werkgebieden

Figuur 9. Orthomozaïeken van de drie in beeld gebrachte stuifzandgebieden (CRS: 28992 Amefoort RDnew)

Figuur 10. Orthomozaïek van het oostelijke stuifzandgebied (CRS: 28992 Amersfoort RDnew)

Figuur 11. Orthomozaïek van het westelijke stuifzandgebied (CRS: 28992 Amersfoort RDnew)

Figuur 12. Orthomozaïek van het westelijke stuifzandgebied (CRS: 28992 Amersfoort RDnew)

3.3 Vegetatiebedekkingskaart en vegetatieclassificatie

Een bruikbare toepassing van de orthomozaïeken is de verwerking tot vegetatiebedekkingskaarten. Hoewel het geen onderdeel maakt van de huidige opdracht, geven we hiervan toch een klein voorbeeld.

Onderstaande foto (Figuur 13) geeft een detail weer van gebied Oost.

Figuur 13. NIR beeld van detail uit gebied Oost

Het betreft een *Near InfraRed* beeld, gemaakt met een NIR camera. Het NIR beeld kan worden verwerkt tot een vegetatiebedekkingskaart (Figuur 14) op basis van NDVI. Ook de bedekkingsgraad kan worden bepaald. In dit voorbeeld is de bedekkingspgraad 21.73%. Ook het classificeren van de verschillende vegetatietypes kan verricht worden op basis van NIR beelden.

Figuur 14. Vegetatiebedekkingskaart, (bedekking 21.73%)

3.4 Hoogtemodellen (Digital Elevation Models)

Figuur 15. Hoogtemodellen van de drie in beeld gebrachte stuifzandgebieden (CRS: 28992 Amersfoort RDnew)

Figuur 16. Hoogtemodel van het oostelijke stuifzandgebied (CRS: 28992 Amersfoort RDnew)

Figuur 17. Hoogtemodel van het westelijke stuifzandgebied (CRS: 28992 Amersfoort RDnew)

Figuur 18. Hoogtemodel van het zuidelijke stuifzandgebied (CRS: 28992 Amersfoort RDnew)

HiView

3.5 Hoogteverschillenkaart

Figuur 19. Hoogteverschillenkaart 2020 vs 2016, oostelijke stuifzandgebied (CRS: 28992 Amersfoort RDnew)

Op basis van de hoogtemodellen van juni 2016 en april 2020 kan een hoogteverschillenkaart worden geproduceerd. In het boverstaande voorbeeld is ingezoomd op een hoogteniveau tussen -0.5m tot 0.5m in het gebied Oost. De verandering in de hoogte van het zandoppervlak (hetzij kaal, hetzij met lage vegetatie) speelt zich af binnen deze bandbreedte.

Ook voor de andere twee interessegebieden, West en Zuid, kunnen soortgelijke hoogteverschilkaarten worden gemaakt. Daarnaast kan de hoogteverandering van het zand in functie van het volume worden uitgedrukt op basis van de hoogtemetingen uit 2016 en 2020. Het verder uitwerken van de hoogteverschillen ligt echter buiten de huidige opdracht.

3.6 Hoogtecorrectie

De hoogte van de metingen uit juni 2016 zijn in de destijds opgeleverde hoogtekaarten aangegeven in het WGS84 coördinatenstelsel. In 2020 is ervoor gekozen de hoogte te meten in het Amersfoort-Rijksdriehoek coördinatenstelsel, waarin de hoogte overeenkomt met het NAP.

Onderstaande hoogtecorrecties zijn toegebracht op de hoogtemeting uit 2016¹:

- Gebied Oost: 43.00m
- Gebied West: 42.99m
- Gebied Zuid: 43.02m

Onderstaande coördinaten geven het centrum aan van de verschillende gebieden:

- Gebied Oost coördinaten: 5.7497, 52.3524
- Gebied West coördinaten: 5.7271, 52.3444
- Gebied Zuid coördinaten: 5.7375, 52.3384

¹ Bron: www.isgeoid.polimi.it/Geoid/Europe/Netherlands/reg_listNETHERLAND.html

4 Discussie

4.1 Nauwkeurigheid

De nauwkeurigheid van de hoogtemodellen van de drie stuifzandgebieden wordt bepaald door te kijken naar *a.*) de interne fout bij het processen van de projectie van de puntenwolk en *b.*) de ingemeten hoogte van de markers t.o.v.de hoogte van de markers in het hoogtemodel. Hieronder wordt per werkgebied aangegeven wat de *reprojection error* van de *Dense Point Cloud* (de puntenwolk die aan de basis ligt van het digitale hoogtemodel) is, alsmede de afwijking van de markers t.o.v. de veldmeting met de Trimble Rover 10.

4.1.1 Gebied Oost

Voor gebied Oost bedroeg de gemiddelde *reprojection error* van de *Dense Point Cloud* 0.016 m (zie tabel 1).

Markers	Easting	Northing	Altitude	Accuracy (m)	Error (m)
29	179870.321000	485448.174000	17.688000	0.003000	0.003663
30	179689.880000	485358.633000	9.253000	0.003000	0.010215
31	179551.348000	485230.002000	7.446000	0.003000	0.014657
32	179375.326000	485163,439000	7.894000	0.003000	0.006722
33	179377.328000	485001.106000	8.227000	0.003000	0.005561
34	179565.830000	485013.516000	8.214000	0.003000	0.006957
35	179676.102000	485077.745000	9.758000	0.003000	0.035183
36	179814.828000	485046.802000	12.031000	0.003000	0.018106
37	179689.379000	484948.280000	10.169000	0.003000	0.013627
38	179504.304000	484902.442000	10.130000	0.003000	0.016442
39	179635.867000	484738,102000	9.444000	0.003000	0.004890
A0	179876.921000	484899.593000	11.135000	0.003000	0.009776
A1	180014.602000	485023.939000	15.781000	0.003000	0.022194
2 42	180021.393000	485186.709000	20.256000	0.003000	0.009531
🗹 Þ 43	179904.754000	485078.145000	11.702000	0.003000	0.008934
☑ № 44	179822.450000	485158.280000	11.725000	0.003000	0.025080
45	179750.979000	485247.182000	8.689000	0.003000	0.013412
46	179922.207000	485329.651000	20.873000	0.003000	0.022161
2 47	179912.118000	485400.577000	12.649000	0.003000	0.018784
Total Error					0.016083

Tabel 1. Nauwkeurigheid van de Dense Point Cloud van het oostelijke stuifzandgebied

Voor het oostelijke stuifzandgebied was er t.o.v. de originele inmeting van de *Ground Control Points* (markers) een gemiddelde vertikale afwijking van -1.6 cm en een gemiddelde absolute afwijking van 2 cm (zie tabel 2).

			h AND (m)	h DEM	vorschil	absoluut
#	long	lat	Trimble	model	(cm)	(cm)
29	179870.321	485448.174	17.688	17.68	1	1
30	179689.88	485358.633	9.253	9.25	0	0
31	179551.348	485230.002	7.446	7.41	-3	3
32	179375.326	485163.439	7.894	nvt		
33	179377.328	485001.106	8.227	nvt		
34	179565.83	485013.516	8.214	8.18	-3	3
35	179676.102	485077.745	9.758	9.71	-5	5
36	179814.828	485046.802	12.031	12.05	2	2
37	179689.379	484948.28	10.169	10.17	0	0
38	179504.304	484902.442	10.13	nvt		
39	179635.867	484738.102	9.444	nvt		
40	179876.921	484899.593	11.135	11.14	0	0
41	180014.602	485023.939	15.781	15.74	-4	4
42	180021.393	485186.709	20.256	20.26	0	0
43	179904.754	485078.145	11.702	11.7	0	0
44	179822.45	485158.28	11.725	11.71	-1	1
45	179750.979	485247.182	8.689	8.64	-5	5
46	179922.207	485329.651	20.873	20.81	-6	6
47	179912.118	485400.577	12.649	12.64	0	0
		-1.6	2			

Tabel 2.. Nauwkeurigheid van het hoogtemodel van het oostelijke stuifzandgebied

≫HiView

4.1.2 Gebied West

Voor gebied West bedroeg de gemiddelde *reprojection error* van de *Dense Point Cloud* 0.009m (zie tabel 3).

Markers	Easting	Northing	Altitude	Accuracy (m)	Error (m)
🗹 🏴 1	178082.915000	483657.663000	9.874000	0.005000	
✓ P 1	178082.915000	483657.663000	9.874000	0.005000	0.007142
🗹 🏴 2	177726.108000	483872.971000	7.638000	0.005000	
🗹 🏴 2	177726.108000	483872.971000	7.638000	0.005000	0.013038
🗹 🏴 3	177611.722000	483982.865000	11.744000	0.005000	
🗹 🏴 3	177611.722000	483982.865000	11.744000	0.005000	0.010383
🗹 🏴 4	177918.309000	484168.852000	7.277000	0.005000	
🗹 🏴 4	177918.309000	484168.852000	7.277000	0.005000	0.015582
🗹 🏴 5	178143.485000	484252.368000	11.522000	0.005000	0.005061
🗹 🏴 5	178143.485000	484252.368000	11.522000	0.005000	0.002860
🗹 🏴 6	178032.615000	484444.636000	9.849000	0.005000	0.003405
🗹 🏴 6	178032.615000	484444.636000	9.849000	0.005000	0.002527
🗹 🏴 7	178283.487000	484567.988000	8.734000	0.005000	0.001041
🗹 🏴 7	178283.487000	484567.988000	8.734000	0.005000	
🗹 🏴 8	178366.111000	484450.939000	15.692000	0.005000	0.007171
🗹 🏴 8	178366.111000	484450.939000	15.692000	0.005000	
🗹 🏴 9	178568.910000	484511.968000	11.635000	0.005000	0.004261
🗹 🏴 9	178568.910000	484511.968000	11.635000	0.005000	
🗹 🏴 10	178682.483000	484283.751000	9.042000	0.005000	0.003879
🗹 Þ 10	178682.483000	484283.751000	9.042000	0.005000	
🗹 Þ 11	178522.560000	484159.875000	8.759000	0.005000	0.006238
🗹 Þ 11	178522.560000	484159.875000	8.759000	0.005000	
🗹 🏴 12	178423.379000	484271.367000	7.987000	0.005000	0.015167
🗹 🏴 12	178423.379000	484271.367000	7.987000	0.005000	
🗹 🏴 13	178331.376000	484057.702000	12.643000	0.005000	0.003962
🗹 🏴 13	178331.376000	484057.702000	12.643000	0.005000	0.004534
🗹 🏴 14	178106.399000	483913.682000	8.878000	0.005000	
🗹 🏴 14	178106.399000	483913.682000	8.878000	0.005000	0.015482
🗹 🏴 15	177993.364000	483846.239000	7.979000	0.005000	
🗹 Þ 15	177993.364000	483846.239000	7.979000	0.005000	0.007194
🗹 Þ 16	177875.668000	483801.510000	8.142000	0.005000	
🗹 Þ 16	177875.668000	483801.510000	8.142000	0.005000	0.010437
Total Error					0.008629

Tabel 3. Nauwkeurigheid van de Dense Point Cloud van het westelijke stuifzandgebied

Voor het westelijke stuifzandgebied was er t.o.v. de originele inmeting van de *Ground Control Points* (markers) een gemiddelde vertikale afwijking van -2.8 cm en een gemiddelde absolute afwijking van 4.1 cm (zie tabel 4).

#	long	lat	h ANP (m) Trimble	h DEM (m) model	verschil (cm)	absoluut verschil (cm)
1	178082.9	483657.7	9.874	9.86	-1	1
2	177726.1	483873	7.638	7.65	1	1
3	177611.7	483982.9	11.744	11.63	-11	11
4	177918.3	484168.9	7.277	7.28	0	0
5	178143.5	484252.4	11.522	11.56	4	4
6	178032.6	484444.6	9.849	9.83	-2	2
7	178283.5	484568	8.734	8.78	5	5
8	178366.1	484450.9	15.692	15.63	-6	6
9	178568.9	484512	11.635	11.56	-7	7
10	178682.5	484283.8	9.042	9.02	-2	2
11	178522.6	484159.9	8.759	8.75	-1	1
12	178423.4	484271.4	7.987	7.9	-9	9
13	178331.4	484057.7	12.643	12.6	-4	4
14	178106.4	483913.7	8.878	8.81	-7	7
15	177993.4	483846.2	7.979	7.93	-5	5
16	177875.7	483801.5	8.142	8.1	0	0
		-2.8	4.1			

Tabel 4. Nauwkeurigheid van het hoogtemodel van het westelijke stuifzandgebied

≫HiView

4.1.3 Gebied Zuid

Voor gebied Zuid bedroeg de gemiddelde *reprojection error* van de *Dense Point Cloud* 0.008m (zie tabel 5). GCP`s 19 en 21 missen omdat iemand deze verwijderd heeft.

Markers	Easting	Northing	Altitude	Accuracy (m)	Error (m)
🗹 Þ 17	178534.165000	483414.353000	11.299000	0.003000	0.006269
✓ № 18	178734.995000	483353.467000	12.785000	0.003000	0.010321
19	178959.282000	483238.502000	13.864000	0.003000	
20	179036.495000	483380.296000	20.583000	0.003000	0.003086
21	178920.584000	483458.174000	11.869000	0.003000	
22	179115.076000	483531.678000	15.867000	0.003000	0.007243
23	179040.746000	483713.966000	13.516000	0.003000	0.008480
24	178906.817000	483819.171000	15.416000	0.003000	0.004604
25	178776.999000	483716.030000	17.301000	0.003000	0.009243
26	178777.399000	483531.733000	12.443000	0.003000	0.006096
27	178645.885000	483539.934000	11.559000	0.003000	0.012693
Total Error					0.008060

Tabel 5. Nauwkeurigheid van de Dense Point Cloud van het zudelijke stuifzandgebied

Voor het zuidelijke stuifzandgebied was er t.o.v. de originele inmeting van de *Ground Control Points* (markers) een gemiddelde vertikale afwijking van -2.0 cm en een gemiddelde absolute afwijking van 4.0 cm (zie tabel 6).

#	long	lat	h ANP (m) Trimble	h DEM (m) model	verschil (cm)	absoluut verschil (cm)
17	178534.2	483414.4	11.299	11.32	2	2
18	178735	483353.5	12.785	12.73	-5	5
19	178959.3	483238.5	13.864	nvt		
20	179036.5	483380.3	20.583	20.51	-7	7
21	178920.6	483458.2	11.869	nvt		
22	179115.1	483531.7	15.867	15.85	-2	2
23	179040.7	483714	13.516	13.44	-8	8
24	178906.8	483819.2	15.416	15.37	-5	5
25	178777	483716	17.301	17.32	2	2
26	178777.4	483531.7	12.443	12.44	0	0
27	178645.9	483539.9	11.559	11.61	5	5
		-2	4			

Tabel 6. Nauwkeurigheid van het hoogtemodel van het zuidelijke stuifzandgebied

4.2 Kwaliteit

Om ook de kwaliteit van de hoogtemodellen over het hele vlak in te kunnen schatten, zijn de hoogtemodellen visueel vergeleken met de orthomozaïeken. Uit deze vergelijking komen geen vreemde artefacten naar voren. De goede weersomstandiigheden op de dag van de vliegmissies en de gunstige invalshoek van het zonlicht in de maand april hebben hier zeker toe bijgedragen.

